If a prime number ' p ' divides a square number ' a^{2} ', then will it even divide 'a'?

Table of Contents

- Proof: If ' p ' is a Prime Number such that ' p ' Divides Square of ' a ', then ' p ' Divides ' a '
- Summary
- What's Next?

In the previous segment, we saw What irrational numbers are and why they are needed. In this segment let us prove if ' p ' is a prime number such that ' p ' divides square of ' a ', then ' p ' divides ' a '.

How do we prove If ' p ' is a prime number such that ' p ' divides square of ' a ', then ' p ' divides ' a '?

Consider a positive integer a. Let the prime factors of a be $f_{1}, f_{2}, f_{3} \ldots f_{n}$ which are not necessarily distinct.

Thus, $a=f_{1} \times f_{2} \times f_{3} \times \ldots \times f_{n}$

$$
\begin{aligned}
& \therefore a^{2}=\left(f_{1} \times f_{2} \times f_{3} \times \ldots \times f_{n}\right) \times\left(f_{1} \times f_{2} \times f_{3} \times \ldots \times f_{n}\right) \\
& \therefore a^{2}=\left(f_{1} \times f_{1}\right) \times\left(f_{2} \times f_{2}\right) \times\left(f_{3} \times f_{3}\right) \times \ldots \times\left(f_{n} \times f_{n}\right)
\end{aligned}
$$

It is given that the prime number p divides a^{2}.This means a^{2} is divisible by p.Thus, $\left(f_{1} \times\right.$ $\left.f_{1}\right) \times\left(f_{2} \times f_{2}\right) \times\left(f_{3} \times f_{3}\right) \times \ldots \times\left(f_{n} \times f_{n}\right)$ is divisible by p.

Therefore $\frac{p}{a}$ must be equal to any one of the prime factors among $f_{1}, f_{2}, f_{3}, \ldots f_{n}$.

But $a=f_{1} \times f_{2} \times f_{3} \times \ldots \times f_{n}$. So, p is also one of the prime factors of a and will thus divide the number a too.

Hence, if p is a prime number such that p divides a^{2}, then p divides a where a is a positive integer.

Q. If $\mathbf{3 0 2 7 6}$ is divisible by 29, will $\mathbf{1 7 4}$ be divisible by $\mathbf{2 9 ?}$

Solution:

$174^{2}=30276$
if p is a prime number such that p divides a^{2}, then p divides a where a is a positive integer.

So, since30276 is divisible by 29, 174 should also be divisible by 29 .

Summary

What's next?

In the next segment of Class 10 Maths, we will look at the Proof of existence of irrational numbers.

