

If a prime number 'p' divides a square number 'a²', then will it even divide 'a'?

Table of Contents

- Proof: If p' is a Prime Number such that p' Divides Square of a', then p' Divides a'
- Summary
- What's Next?

In the previous segment, we saw **What irrational numbers are and why they are needed**. In this segment let us prove if 'p' is a prime number such that 'p' divides square of 'a', then 'p' divides 'a'.

How do we prove If p' is a prime number such that p' divides square of a', then p' divides a'?

Consider a positive integer *a*. Let the prime factors of *a* be $f_1, f_2, f_3 \dots f_n$ which are not necessarily distinct.

Thus, $a = f_1 \times f_2 \times f_3 \times ... \times f_n$

$$\therefore a^2 = (f_1 \times f_2 \times f_3 \times \dots \times f_n) \times (f_1 \times f_2 \times f_3 \times \dots \times f_n)$$

$$\therefore a^2 = (f_1 \times f_1) \times (f_2 \times f_2) \times (f_3 \times f_3) \times \dots \times (f_n \times f_n)$$

It is given that the prime number p divides a^2 . This means a^2 is divisible by p. Thus, $(f_1 \times f_1) \times (f_2 \times f_2) \times (f_3 \times f_3) \times ... \times (f_n \times f_n)$ is divisible by p.

Therefore $\frac{p}{a}$ must be equal to any one of the prime factors among $f_1, f_2, f_3, ..., f_n$.

But $a = f_1 \times f_2 \times f_3 \times ... \times f_n$. So, *p* is also one of the prime factors of *a* and will thus divide the number *a* too.

Hence, if p is a prime number such that p divides a^2 , then p divides a where a is a positive integer.

Q. If 30276 is divisible by 29, will 174 be divisible by 29?

Solution:

 $174^2 = 30276$

if p is a prime number such that p divides a^2 , then p divides a where a is a positive integer.

So, since 30276 is divisible by 29, 174 should also be divisible by 29.

Summary

What's next?

In the next segment of Class 10 Maths, we will look at the **Proof of existence of irrational numbers.**